Contents

1-2 An introduction to the Shibaura Institute of Technology
3-6 Academics Overview
 7 Course List
 8 Campus
 9 Student accommodations
 10 Voices
 11 Non-Degree Program
 13 Degree Program

Locations

All three campuses are in the greater Tokyo area, with easy access to the world. They are in the perfect locations to experience Japanese culture.

Established in 1927

Number of departments 16

Number of undergraduate students and post-graduate students 7,413/974

Number of exchange students 501

Countries of origins for international students:
- Brazil 24%
- Thailand 16%
- Korea 10%
- Malaysia 11%
- China 11%
- Vietnam 5%
- Italy 5%
- Poland 5%
- others 13%

Number of laboratories 2,700

Number of Partner universities 71

Number of undergraduate students and post-graduate students breakdown:
- Brazil 24%
- Poland 5%
- Italy 5%
- Vietnam 5%
- Korea 10%
- China 11%
- Malaysia 11%
- Thailand 16%
- others 13%

Contents:

1-2 An introduction to the Shibaura Institute of Technology
3-6 Academics Overview
 7 Course List
 8 Campus
 9 Student accommodations
 10 Voices
 11 Non-Degree Program
 13 Degree Program

Locations:

All three campuses are in the greater Tokyo area, with easy access to the world. They are in the perfect locations to experience Japanese culture.

Established in 1927

Number of departments 16

Number of undergraduate students and post-graduate students 7,413/974

Number of exchange students 501

Countries of origins for international students:
- Brazil 24%
- Thailand 16%
- Korea 10%
- Malaysia 11%
- China 11%
- Vietnam 5%
- Italy 5%
- Poland 5%
- others 13%

Number of laboratories 2,700

Number of Partner universities 71

Number of undergraduate students and post-graduate students breakdown:
- Brazil 24%
- Poland 5%
- Italy 5%
- Vietnam 5%
- Korea 10%
- China 11%
- Malaysia 11%
- Thailand 16%
- others 13%
For long-term international students

Academics Overview

Life Sciences

- **College of Engineering**
 - **Mechanical Engineering**
 - Year 1-3 at Omiya / Year 4 at Toyosu
 - Basic knowledge about manufacturing machinery
 - This field is the backbone of engineering. Study a variety of manufactured devices, including automobiles, robots, energy devices, aerospace devices, and medical and welfare devices. Basic science will receive a focus; thus, our aim is to create a fusion of mechanical engineering and electrical and electronic engineering, where you can better understand “Aging” and its various problems you will face as a life scientist, such as aging and the effects of environmental contamination. Learn the fundamentals and concepts of biology, chemistry, and other devices and systems that help people live and recover functionality. Create the devices that assist the aged so they can continue to live healthy lives.

- **College of Engineering**
 - **Engineering Science and Mechanics**
 - Year 1-3 at Omiya / Year 4 at Toyosu
 - Functionality that moves society
 - Our aim is to offer education and research to help us imagine and realize harmony between humans and the environment, with mechanical engineering as the base. Our field includes various engineering, scientific, and medical disciplines. Deepen our research over the following fields: biology, energy and the environment, material science, mechanical functionality and control, manufacturing and fabrication processes, and advanced applications for nanomaterial and microtechnology.

- **College of Systems Engineering and Science**
 - **Machinery and Control Systems**
 - Year 1-4 at Omiya
 - Create the future, develop the personnel
 - Set our main focus on high-functionality robots, next-gen automobiles, and clean energy power sources that support our modern society. Analyze, develop, design, and make the machinery control systems essential for building our future. Deepen our research over the following fields: energy and the environment, material science, mechanical functionality and control, manufacturing and fabrication processes, and advanced applications for nanomaterial and microtechnology.

For long-term international students

Machinery and Control Systems

Create the future, develop the personnel

Set our main focus on high-functionality robots, next-gen automobiles, and clean energy power sources that support our modern society. Analyze, develop, design, and make the machinery control systems essential for building our future. Deepen our research over the following fields: energy and the environment, material science, mechanical functionality and control, manufacturing and fabrication processes, and advanced applications for nanomaterial and microtechnology.

Materials and Chemistry

- **College of Engineering**
 - **Materials Science and Engineering**
 - Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
 - Basic materials that are used to create “things”
 - Handle metals, ceramics, organics, and composites. Offer a wide variety of research including high functionality materials, environmental hygiene. Learn about inorganic chemistry, organic chemistry, physical chemistry, chemical engineering, analytical chemistry, and biological chemistry through lectures and experiments.

- **College of Engineering**
 - **Applied Chemistry**
 - Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
 - New materials, medicine, food, environment, chemistry, and new applications
 - Strive to find new application of applied chemistry for electronic devices, medicines, foods, agricultural applications, environmental hygiene. Learn about inorganic chemistry, organic chemistry, physical chemistry, chemical engineering, analytical chemistry, and biological chemistry through lectures and experiments.

Electricity, Electronics and Information

- **College of Engineering**
 - **Communications Engineering**
 - Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
 - Information transmission using hardware and software
 - Learn about information network technology, electronics, mobile and wireless communications technology, photonics, information processing technology (computer-related technologies), multimedia technology, and biological communication technology; all devices to transmit information, with a good balance between hardware and software.

- **College of Engineering**
 - **Electronic Engineering**
 - Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
 - Fundamental knowledge and creativity to work with electronics
 - Learn about the physical device field and the intelligent information control field. This department follows the Japan Accreditation Board for Engineering Education educational program. Learn how to apply electronics that continue to develop to the changes in industry and society.

- **College of Engineering**
 - **Electrical Engineering**
 - Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
 - Electrical technologies for use in high technology
 - Study a wide variety of fields related to electrical technologies. Gain skills to keep up with rapid development of high technology in industries.

This overview introduces the 16 departments in 3 colleges and 1 school at Shibaura Institute of Technology, listing them by the 7 academic areas.

For long-term international students

Mysteries of Life revealed through a better understanding of “Aging”

Learn basics to aid your understanding of the various problems you will face as a life scientist, such as aging and the effects of environmental contamination. Also learn the methodologies you can use to solve these issues. Research the causes of dementia and preventative measures. Develop ways to degrade environmental contaminants using microbes.

Academics Overview

This overview introduces the 16 departments in 3 colleges and 1 school at Shibaura Institute of Technology, listing them by the 7 academic areas.
For long-term international students

Academics Overview

Electricity, Electronics and Information

College of Engineering
Information Science and Engineering
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Computer technology to enrich lives and society
Learn the basics and applications of software technology, hardware technology, database and network technology, and human-communication technology. Understand the underlying principles of each, and develop the abilities to apply, deploy, and create each of them.

College of Systems Engineering and Science
Electronic Information Systems
Year 1-4 at Omiya
Information society using innovative and systematic approaches
Learn about a wide range of fields to become a 21st century technologist who can develop systems and innovative solutions and contribute to a global and highly informationalized society. Acquire the systematic approaches and sensitivities needed through experimentation and practical learning.

Mathematical Sciences

College of Systems Engineering and Science
Mathematical Sciences
Year 1-4 at Omiya
Solutions to societal problems using mathematical sciences
Mathematical science can help with the complexities in modern society. First learn the basics of mathematics, then equip yourself with the applications available through simulation technology, and finally become the one who can work in a wide range of science and engineering fields.

Construction

College of Engineering
Civil Engineering Social Infrastructure Course
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Engineers with technological capabilities to provide for our citizens
Learn mechanics, disaster prevention, information, environment and planning comprehensively develop the ideas of disaster prevention and rebuilding plans for cities. Learn how to establish earthquake resistance and tolerance systems of roads, railways, bridges, water and sewage systems, houses, and ports.

College of Engineering
Civil Engineering Social System Design Course
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Engineers with sensibilities to produce engineering for our citizens
Learn material science, information, and the environment, getting experience in a variety of subjects to develop your practical skills. Through hands-on experience, students will seek not only the high technological standard but also what would be the real happiness.

Design

College of Engineering and Design
Manufacturing Systems and Product Design Course
Year 1 and 2 at Omiya / Year 3 and 4 at Shibaura
Product design from the basics and through to advanced application
Learn up to date productive technologies along with the methodologies and processes for product design. Study product design technologies (including universal design, sustainable design, and emotional design). Dole into manufacturing techniques including CAD/CAM, material engineering, forming processes, and management.

College of Engineering and Design
Robotics and Information Design Course
Year 1 and 2 at Omiya / Year 3 and 4 at Shibaura
Technicians to develop the products to aid society
Study interactive design, software design, and mechatronics design. Learn graphics, usability and other features of productive technology. Gain an understanding of programming and software design. Study of robotics design provides you with opportunities to learn about mechatronics, motion control, and similar fields.
For short-term international students

Course List

Following is our Course Lists for Fall 2016 Undergraduate Sandwich Program

Department of Mechanical Engineering
- Advanced course on Mechanical Engineering
- Introduction to Energy and power source
- Seminar on Mechanical Engineering

Department of Engineering Science and Mechanics
- Advanced Laboratory Exercises for Engineering Science 1
- Advanced Laboratory Exercises for Engineering Science 2
- Fluid Mechanics
- Mechanics of Materials Exercises
- Robotics
- Seminar on Mechanical Engineering

Department of Materials Science and Engineering
- Introduction to Computational Material Science
- Materials Science 2
- Nuclear Science Engineering
- Reliability Engineering
- Semiconductors Materials
- Surface Treatment

Department of Applied Chemistry
- Analytical Chemistry 1
- Analytical Chemistry 2
- Interface Chemistry
- Introduction to Chemical Biology
- Laboratory Course of Physical Chemistry

Department of Electrical Engineering
- Applied Mathematics
- Electric Measurements
- Electrical Engineering Seminar
- Electromagnetism 3
- Engineering Practice 1
- Engineering Practice 2
- Mechatronics
- Power Electronics
- Vision and lighting

Department of Communications Engineering
- Fabrication Practice 1
- Fabrication Practice 2
- Introduction to Communication Engineering 1
- Introduction to Communication Engineering 2
- Seminar on Communication Engineering
- Software Programming 1

Department of Electronic Engineering
- Biosensors
- Electronic materials
- Acoustic Systems
- Experiments in Electronic Engineering Course 2
- Optoelectronics
- Semiconductors Devices

Department of Civil Engineering
- Geographic Information Systems
- Hydro Engineering
- Surveying Practice 1
- Surveying Practice 2
- Underground Facility Engineering
- General Lectures of Civil Engineering

Department of Architecture
- Architectural Design Studio - 1
- Architectural Design Studio - 2
- Architectural Design Studio - 3
- Architectural Design Studio - 4
- Architectural Design Studio - 5
- Exercises in Urban Analysis

Department of Architecture and Building Engineering
- Architectural Design 1
- Architectural Design 3 - C
- Architectural Design 3 - D
- Architecture and Building Engineering Seminar 2
- Architectural Design 3
- Architectural Design 3 - A
- Design & Drawing 3 - B

Department of Information Science and Engineering
- Advanced Exercise on Computer and Information Science 2B
- Applied Mathematics
- Fundamental Exercise on Computer and Information Engineering 1B
- Human Computer Interaction 1
- Operating Systems
- Principles of Programming Languages

Department of Bio science and Engineering
- Advanced Bio science
- Applied Bioscience
- Assistive Technologies
- Basic Biological experiments
- Biological Measurements
- Practice on CAD/CAM

Department of Electronic Information Systems
- Computer Simulation
- Control Systems
- Information Communication Technology
- Introduction to Embedded Systems
- Programming Language Processor
- Recent Trends on Electronic Systems
- Recent Trends on Information Systems

Department of Machinery and Control Systems
- Automotive Engineering
- Control Engineering II
- Exercises in Inventive and Creative Design
- Inventive and Creative Design
- Machinery System Seminar
- Mechanics I
- Physics II: Electricity and Magnetism

Department of Architecture and Environment Systems
- Basic Environmental Studies in English
- Environmental Studies in English
- Environmental Field Survey 1
- Environmental Land Use Planning
- Land Use Planning Studio
- Environmentally Sustainable Engineering

Department of Mathematical Sciences
- Analysis 1
- Automata
- Analysis 2: Differential Equations
- Fundamental Algebra
- Introduction to Numerical Analysis

Department of Engineering and Design
- Communication Design
- Engineering Ethics
- Practice on Computer Aided Engineering Systems
- Practice on Design Project 1 (Product Design)
- Practice on Design Project 7 (Production Design)
- Practice on Design Project 8 (Architecture and Urban Design)
- Software Design

Mathematics/Quantitative Reasoning
- Calculus 1
- Calculus 2
- Ordinary Differential Equations
- Liberal Arts & Social Science
- Information Accessibility

Language
- Japanese Language 1 (Omiya)
- Japanese Language 1 (Toyosu)
- Japanese Language 2 (Omiya)
- Japanese Language 2 (Toyosu)
- Japanese Language 3 (Omiya)
- Japanese Language 3 (Toyosu)
- Japanese Language 4 (Omiya)

Places of interest around the campuses

Railway museum
This railway museum was established to mark the 20th anniversary of the establishment of JR East and is popular with both young and old. It is fondly known as the “Tieppaku”.

Omiya Park
This prefectural park has been chosen as one of the top 100 sites for cherry blossom viewing. It covers 67.8ha and the special observation deck at 150 m provides excellent views across Tokyo.

Tokyo Tower
This communications tower was erected in 1958. The observation deck at 150 m and the special observation deck at 250 m both provide excellent views across Tokyo.

Urban Dock Lalaport Toyosu
This seaside mall has the latest fashions and household items along with cinemas and fitness gyms.
For long-term international students

Student accommodations

The Global Dormitory in the Omiya campus is a place where international students and Japanese students can live together and develop global perspectives.

Roles of RA

RA (Resident Advisor) helping residents enjoy their student’s life

There are one or two graduate students living on each floor of the Global Dormitory as RA and who are there to offer advice about daily life and study. For example, after the dormitory’s welcome ceremony in April, new students go to each floor with RA to deepen their understanding about dormitory rules and how to use the common facilities properly. In an environment where people of different backgrounds and religions share the same living space, RA plays an important role in providing overall support so that every student can live in the dormitory comfortably.

Overview of the facilities

Building structure: Five story reinforced concrete building
Number of rooms: 120 (total of Japanese and overseas students, including 30 females)
Room (individual): 17 m²
Facilities: Bed, air conditioner, desk, chair, bathroom unit with toilet (heated bidet type), closet, LAN, etc.
Shared facilities, etc: Kitchen and common room on each floor, coin operated washers and dryers
Maximum Contract: 2 years
Rent: JPY 35,000/month(excluding meals and utilities)
* One-month’s rent is needed as a deposit upon entry to the dormitory

Sample: Dormitory room layout

Common room / Shared kitchen

Common room and shared kitchen are located in the central area of each floor with accommodation (2nd to 5th floors). The dormitory is designed to promote mutual understanding among students from different countries, nationalities, religions and customs.

Common room and shared kitchen, which develop global perspectives.

The Global Dormitory in the Omiya campus is a place where international students and Japanese students can live together and develop global perspectives.

Commong room / Shared kitchen

Common room and shared kitchen are located in the central area of each floor with accommodation (2nd to 5th floors). The dormitory is designed to promote mutual understanding among students from different countries, nationalities, religions and customs.

For short-term international students

Shibaura Institute of Technology attracts students from all corners of the world.

Here are some comments from international students about their lives at Shibaura Institute of Technology.

Voices from our international students

Shibaura Institute of Technology attracts students from all corners of the world.

Here are some comments from international students about their lives at Shibaura Institute of Technology.

Priscila Ribeiro Zucato

[Brazil]

Sandwich Program

Department of Electrical Engineering

University of Sao Paulo

What have you learned or achieved at SIT?

What are you studying/learning at SIT, and why?

What did you choose SIT?

What have you learned or achieved at SIT?

Why did you choose SIT?

What have you learned or achieved at SIT?

What have you learned or achieved at SIT?

What have you learned or achieved at SIT?
For short-term international students

Non-Degree Program

Shibaura Institute of Technology has a wide range of academic and research programs for international students. SIT’s programs for international students vary in duration, credit transfer availability and format so that each student can select a program that can help achieve their academic goals. Refer to the following to learn more about the options at SIT. We look forward to welcoming you to SIT.

Undergraduate Sandwich Program

Outline:
Sandwich Program is a credited academic program, where the student continues to be registered at their home university, while studying at Shibaura Institute of Technology for a period of time between six months to a year.

For example, the student may study at their home university for the first two years, study at the College of Engineering at Shibaura Institute of Technology for the third year, and then complete their final studies at their home university. Students have a wide range of study options, from 16 departments and 3 colleges and one school. Classes are taught in English, and Japanese language lessons are also available.

Example:

Year 1 at Home Unv.
Year 2 at SIT
Year 3 at SIT
Year 4 at Home Unv.

Schedule:

<table>
<thead>
<tr>
<th></th>
<th>Spring Semester</th>
<th>Fall Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOV</td>
<td>Deadline</td>
<td>MAY</td>
</tr>
<tr>
<td>DEC</td>
<td>Result</td>
<td>JUN</td>
</tr>
<tr>
<td>JAN - FEB</td>
<td>Preparation</td>
<td>JUL - AUG</td>
</tr>
<tr>
<td>MAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR - AUG</td>
<td>Enroll at SIT</td>
<td>SEP</td>
</tr>
</tbody>
</table>

Contact: global-admission@ow.shibaura-it.ac.jp

Scholarships

Shibaura Institute of Technology offers scholarships for students who wish to study under the following short term programs (Non-Degree Seeking). The scholarships should be applied prior to the arrival in Japan.

Research Exchange / Laboratory Internship Program

Outline:
Research Exchange/Laboratory Internship Program gives the student a chance to experience another culture, do some research in a different academic/research environment, and to pursue their specific research topics by involving international cooperation and collaboration at SIT.

Requirements:
The applicant must:
• be an undergraduate or graduate student.
• have sufficient English or Japanese skills.
• be physically and mentally healthy.

Program duration:
1 or 2 semesters

Schedule:

Program duration:
A couple of weeks - 1 year

Deadline:
Students can participate in this program at their preferable timing. SIT accepts your application 3 months prior to your arrival.

Requirements:
The applicant must:
• be an undergraduate student
• have good English skills-preferably TOEFL iBT 80 or equivalent
• be physically and mentally healthy

Program duration:
1 or 2 semesters

Scholarships

Shibaura Institute of Technology offers scholarships for students who wish to study under the following short term programs (Non-Degree Seeking). The scholarships should be applied prior to the arrival in Japan.

Cost of living in Japan

A major cost will be housing and utilities. Use your grants wisely. An average university student living in a boarding situation or in an apartment would spend up to JPY 85,000 per month. Of this, 42% will be housing and utilities. The next biggest share will be taken by food at 25%, adding up to 67%. Of the remaining 30% or so will be health and hygiene, recreation, and other daily expenses.

However, if you try to live in Tokyo, the cost will be higher than the average. It will be approximately JPY 115,000 or more.

Living expenses for an university student boarding or in an apartment

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing and utilities</td>
<td>42%</td>
</tr>
<tr>
<td>Food</td>
<td>25%</td>
</tr>
<tr>
<td>Health and hygiene</td>
<td>14%</td>
</tr>
<tr>
<td>Recreation</td>
<td>15%</td>
</tr>
</tbody>
</table>

Japan Student Services Organization data (2014)
Degree Program

For long-term international students

Entrance examination

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Department</th>
<th>Number of successful candidates</th>
<th>Application term submission</th>
<th>Exam date</th>
<th>Result announcement</th>
<th>Date of admission document submission</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Engineering</td>
<td>All</td>
<td>1,500</td>
<td>Monday, November 20, 2016</td>
<td>Sunday, January 30, 2017</td>
<td>Monday, February 20, 2017</td>
<td>Toyosu or Omiya campus</td>
<td></td>
</tr>
<tr>
<td>College of Science and Engineering</td>
<td>All</td>
<td>280,000</td>
<td>Monday, November 20, 2016</td>
<td>Sunday, January 30, 2017</td>
<td>Secondary, Wednesday, March 15, 2017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualifications

Students with foreign nationality must reach the following minimum academic standards.

Those who do not have Japanese citizenship must meet the following qualifications (1) to (4), as well as eligibility to pass the exam:

1. Students who have undergone at least 12 years of education or equivalent to a high school education in Japan or abroad, or have been granted provisional high school equivalency status.
2. Students who have passed the entrance examination of universities in Japan.
3. Students who have successfully completed a university or college education in Japan or abroad.
4. Students who have completed at least 12 years of education in a foreign country and have been granted equivalent status to a high school education in Japan.

Tuition and fees

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>First year</th>
<th>Second year</th>
<th>Third year</th>
<th>Fourth year</th>
<th>Fifth year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>1,520,000</td>
<td>1,000,000</td>
<td>280,000</td>
<td>141,500</td>
<td>114,500</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,520,000</td>
<td>1,000,000</td>
<td>280,000</td>
<td>141,500</td>
<td>114,500</td>
<td></td>
</tr>
</tbody>
</table>

This is for students who wish to study at SIT as a research student to do their research activity under the designated supervisor in order to prepare to enroll Master’s or Doctor’s program.

Requirements for Graduate and Research Student Program

Participants

- Must be fluent in English or Japanese and physically and mentally healthy.
- Must complete or will finish 16 years of school education or equivalent.
- Must meet the following qualifications (1) to (4).

Contact

For Graduate Program: daim-ume@shibaura-it.ac.jp
For Research Student Program: global-admission@shibaura-it.ac.jp

Application documents

1. CV
2. Abstract of Master’s thesis (if completed Master’s course)
3. Research Plan
4. Certificate of Graduation
5. Academic Records, if any

Graduate Program (Master’s/Doctor’s)

SIT offers two programs in Graduate School: Graduate School of Engineering and Science and Graduate School of Engineering Management (MOT). At Graduate School of Engineering and Science, students will deepen their skills and knowledge that they have gained in their undergraduate education, act and think proactively, and prepare for being an expert in the field they pursue. Meanwhile, students at Graduate School of Engineering Management (MOT) will learn how to combine the knowledge of engineering with management skills to develop strategies and envision the technological needs and solutions in business.